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We consider an extension of Granger causality to nonlinear bivariate time series. In this frame, if the
prediction error of the first time series is reduced by including measurements from the second time series, then
the second time series is said to have a causal influence on the first one. Not all the nonlinear prediction
schemes are suitable to evaluate causality; indeed, not all of them allow one to quantify how much knowledge
of the other time series counts to improve prediction error. We present an approach with bivariate time series
modeled by a generalization of radial basis functions and show its application to a pair of unidirectionally
coupled chaotic maps and to physiological examples.
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I. INTRODUCTION

Identifying causal relations among simultaneously ac-
quired signals is an important problem in computational time
series analysis and has applications in economy[1,2], EEG
analysis[3], human cardiorespiratory system[4], interaction
between heart rate and systolic arterial pressure[5], and
many others. Several papers dealt with this problem, relating
it to identification of interdependence in nonlinear dynamical
systems[6,7] or to estimates of information rates[8,9]. Some
approaches modeled data by oscillators and concentrated on
the phases of the signals[10]. One major approach to ana-
lyze the causality between two time series is to examine if
the prediction of one series could be improved by incorpo-
rating information of the other, as proposed by Granger[1] in
the context of linear regression models of stochastic pro-
cesses. In particular, if the prediction error of the first time
series is reduced by including measurements from the second
time series in the linear regression model, then the second
time series is said to have a causal influence on the first time
series. By exchanging the roles of the two time series, one
can address the question of the causal influence in the oppo-
site direction. It is worth stressing that, within this definition
of causality, flow of time plays a major role in making infer-
ence, from time series data, depending on direction. Since
Granger causality was formulated for linear models, its ap-
plication to nonlinear systems may not be appropriate. In this
paper we consider the problem of extending Granger causal-
ity definition to nonlinear problems.

In the next section we review the original approach by
Granger while describing our point of view about its nonlin-
ear extension; we also propose a method which fulfills the
requirements a prediction scheme should satisfy to analyze
causality. Our method exploits radial basis functions, an al-
gorithm initially proposed to perform exact interpolation of a
set of data points in a multidimensional space(see, e.g.,
[11]). In Sec. III we show application of the proposed
method to simulated and real examples. Some conclusions
are drawn in Sec. IV.

II. GRANGER CAUSALITY

A. Linear modeling of bivariate time series

We briefly recall the vector autoregressive(VAR) model
which is used to define linear Granger causality[1]. Let
hx̄iji=1,. . .,N and hȳiji=1,. . .,N be two time series ofN simulta-
neously measured quantities. In the following we will as-
sume that time series are stationary. Fork=1 to M (where
M =N−m, m being the order of the model), we denotexk

= x̄k+m, yk= ȳk+m, Xk=sx̄k+m−1, x̄k+m−2, . . . ,x̄kd, and Yk

=sȳk+m−1, ȳk+m−2, . . . ,ȳkd and we treat these quantities asM
realizations of the stochastic variables(x, y, X, Y). The fol-
lowing model is then considered[12]:

x = W11 ·X + W12 ·Y ,

y = W21 ·X + W22 ·Y , s1d

hWj being fourm-dimensional real vectors to be estimated
from data by standard least-squares techniques. Let us call
exy andeyx the prediction errors of this model, defined as the
estimated variances ofx−W11·X −W12·Y and y−W21·X
−W22·Y, respectively. We also consider autoregressive(AR)
predictions of the two time series—i.e., the model

x = V1 ·X ,

y = V2 ·Y , s2d

V1 andV2 to be estimated by least squares fit. The estimate
of the variance ofx−V1·X is calledex (the prediction error
whenx is predicted solely on the basis of knowledge of its
past values); similarly, ey is the variance ofy−V2·Y. If the
prediction ofx improves by incorporating the past values of
hyij—i.e., exy is smaller thanex—then y has a causal influ-
ence onx. Analogously, ifeyx is smaller thaney, thenx has a
causal influence ony. Calling c1=ex−exy and c2=ey−eyx, a
directionality index can be introduced:
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D =
c2 − c1

c1 + c2
. s3d

The indexD varies from 1 in the case of unidirectional in-
fluencesx→yd to −1 in the opposite casesy→xd, with inter-
mediate values corresponding to bidirectional influence. Ac-
cording to this definition of causality, the following property
holds for M sufficiently large:if Y is uncorrelated withX
and x, thenex=exy. This means that in this case VAR and AR
modelings of thehxij time series coincide. Analogouslyif X
is uncorrelated withY and y, then ey=eyx. It is clear that
these properties are fundamental and make the linear predic-
tion approach suitable to evaluate causality. On the other
hand, for nonlinear systems higher-order correlations may be
relevant. Therefore, we propose that any prediction scheme
providing a nonlinear extension of Granger causality should
satisfy the following property:(P1) if Y is statistically inde-
pendent ofX and x, then ex=exy; if X is statistically inde-
pendent ofY and y, theney=eyx. In a recent paper[13], use
of a locally linear prediction scheme[14] has been proposed
to evaluate nonlinear causality. In this scheme, the joint dy-
namics of the two time series is reconstructed by delay vec-
tors embedded in an Euclidean space; in the delay embed-
ding space a locally linear model is fitted to data. The
approach described in[13] satisfies property P1 only if the
number of points in the neighborhood of each reference
point, where linear fit is done, is sufficiently high to establish
good statistics; however, linearization is valid only for small
neighborhoods. It follows that this approach to nonlinear
causality requires very long time series to satisfy P1. In order
to construct methods working effectively with moderately
long time series, in the next subsection we will characterize
the problem of extending Granger causality as the one of
finding classes of nonlinear models satisfying property P1.

B. Nonlinear models

What is the most general class of nonlinear models which
satisfy P1? The complete answer to this question is matter
for further study. Here we only give a partial answer—i.e.,
the following family of models:

x = w11 · FsXd + w12 · CsYd,

y = w21 · FsXd + w22 · CsYd, s4d

where hwj are four n-dimensional real vectors,F
=sw1, . . . ,wnd aren given nonlinear real functions ofm vari-
ables, andC=sc1, . . . ,cnd are n other real functions ofm
variables. GivenF andC, model(4) is a linear function in
the space of featuresw andc; it depends on 4n variables, the
vectorshwj, which must be fixed to minimize the prediction
errors

exy =
1

M
o
k=1

M

fxk − w11 · FsXkd − w12 · CsYkdg2;

eyx =
1

M
o
k=1

M

fyk − w21 · FsXkd − w22 · CsYkdg2. s5d

We also consider the model

x = v1 · FsXd,

y = v2 · CsYd, s6d

and the corresponding prediction errorsex andey.
Now we prove that model(4) satisfies P1. Let us suppose

thatY is statistically independent ofX andx. Then, for each
m=1, . . . ,n and for eachl=1, . . . ,n, cmsYd is uncorrelated
with x and withwlsXd. It follows that

exy = varfx − w11 · FsXd − w12 · CsYdg

= varfx − w11 · FsXdg + varfw12 · CsYdg. s7d

The vectorshwj must be fixed to minimize the prediction
error exy: from the equation above it follows that, for large
M, the minimum corresponds tow12=0; hence, models(4)
and (6) of the hxij time series coincide. The same argument
may be used exchangingx andy. This proves that P1 holds.

C. Radial basis functions

In this subsection we propose a strategy to choose the
functionsF andC, in model(4), in the frame of radial basis

functions(RBF) methods. Fixedn!M, n centershX̃rjr=1
n , in

the space ofX vectors, are determined by a clustering pro-
cedure applied to datahXkjk=1

M . Analogously n centers

hỸrjr=1
n , in the space ofY vectors, are determined by a clus-

tering procedure applied to datahYkjk=1
M . We then make the

following choice:

wrsXd = exps− iX − X̃ri2/2s2d, r = 1, . . . ,n,

crsYd = exps− iY − Ỹri2/2s2d, r = 1, . . . ,n, s8d

s being a fixed parameter, whose order of magnitude is the

average spacing between the centers. The centershX̃rj are
prototypes of theX variables; hence,w functions measure
the similarity to these typical patterns. Analogously,c func-
tions measure the similarity to typical patterns ofY. Many
clustering algorithms may be applied to find prototypes; for
example, in our experiments we use fuzzyc means[15].

Some remarks are in order. First, we observe that the
models described above may trivially be adapted to handle
the case of reconstruction embedding of the two time series
in a delay coordinate space, as described in[13]. Second, we
stress that in Eqs.(4) x andy are modeled as the sum of two
contributions, one depending solely onX and the other de-
pendent onY. Obviously better prediction models forx and
y exist, but they would not be useful to evaluate causality
unless they would satisfy P1. This requirement poses a limit
to the level of detail at which the two time series may be
described, if one is looking at causality relationships. The
justification of the model we propose here, based on regular-
ization theory[16], is sketched in the Appendix. In the Ap-
pendix we also recall the standard RBF modeling of the bi-
variate time series.
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D. Empirical risk and generalization error

In the previous subsections the prediction error has been
identified as the empirical risk, although there is a difference
between these two quantities as statistical learning theory
(SLT) [17] shows. The deep connection between empirical
risk and generalization error deserves a comment here. First
of all we want to point out that the ultimate goal of a pre-
dictor and in general of any supervised machinex= fsXd [18]
is to generalize—that is, to correctly predict the output val-
ues x corresponding to never seen before input patternsX
(for definiteness we consider the case of predictingx on the
basis of the knowledge ofX). A measure of the generaliza-
tion error of such a machinef is therisk Rffg defined as the
expected value of the loss functionV(x, fsXd):

Rffg =E dx dX V „x, fsXd…Psx,Xd, s9d

wherePsx,Xd is the probability density function underlying
the data. A typical example of loss function isV(x, fsXd)
=(x− fsXd)2 and in this case the function minimizingRffg is
called theregression function. In generalP is unknown and
so we cannot minimize the risk. The only data we have are
M observations(examples) S=hsxk,Xkdjk=1

M of the random
variablesx and X drawn according toPsx,Xd. Statistical
learning theory[17] as well as regularization theory[16]
provides upper bounds of the generalization error of a learn-
ing machine f. Inequalities of the following type may be
proven:

Rffg ø ex + C, s10d

where

ex =
1

M
o
k=1

M

fxk − fsXkdg2 s11d

is theempirical risk, which measures the error on the train-
ing data.C is a measure of thecomplexityof machinef and
it is related to the so-called Vapnik-Chervonenkis(VC) di-
mension. Predictors with low complexity guarantee low gen-
eralization error because they avoid overfitting. When the
complexity of the functional space where our predictor
“lives” is small, then the empirical risk is a good approxima-
tion of the generalization error. The models we deal with in
this work verify such constraint. In fact, linear predictors
have a finite VC dimension, equal to the size of the space
where the input patterns live, and predictors expressed as
linear combinations of radial basis functions are smooth. In
conclusion empirical risk is a good measure of the generali-
zation error for the predictors we are considering here and so
it can be used to construct measures of causality between
time series[19].

III. EXPERIMENTS

In order to demonstrate the usefulness of the proposed
approach, in this section we study two examples: a pair of
unidirectionally coupled chaotic maps and two physiological
problems.

A. Chaotic maps

Let us consider the following pair of noisy logistic maps:

xn+1 = a xn s1 − xnd + shn+1,

yn+1 = s1 − ed a yn s1 − ynd + e a xn s1 − xnd + sjn+1;

s12d

hhj and hjj are unit variance Gaussianly distributed noise
terms; the positive parameters determines their relevance.
Usingsø0.07, the time series is not observed to diverge. We
fix a=3.8, andeP f0,1g represents the couplingx→y. In the
noise-free casess=0d, a transition to synchronization
sxn=ynd occurs ate=0.37. Weevaluate the Lyapunov ex-
ponents by the method described inf20g: the first expo-
nent is 0.43, and the second exponent depends one and is
depicted in Fig. 1 fore,0.37 sit becomes negative for
e.0.37d. For several values ofe, we have considered runs
of 105 iterations, after 105 transients, and evaluated the
prediction errors by Eqs.s4d and s6d, with m=1, n=100,
ands=0.05. InFig. 2sad we depict, in the noise-free case,
the curves representingc1 and c2 versus couplinge. In
Figs. 2sbd–2sdd we depict the directionality indexD versus
e, in the noise-free case and fors=0.01 ands=0.07, re-
spectively. In the noise-free case we findD=1; i.e., our
method revealed unidirectional influence. As the noise in-
creases, also the minimum value ofe, which renders uni-
directional coupling detectable, increases.

B. Physiological data

As a real example, we consider time series of heart rate
and breath rate of a sleeping human suffering from sleep
apnea(10 min from data set B of the Santa Fe Institute time
series contest held in 1991, available in the Physionet data
bank[21]). There is growing evidence that suggests a causal
link between sleep apnea and cardiovascular disease[22],
although the exact mechanisms that underlie this relationship
remain unresolved[23]. Figure 3 clearly shows that bursts of

FIG. 1. The second Lyapunov exponent of the coupled maps
(12) is plotted versus couplinge.
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the patient breath and cyclical fluctuations of heart rate are
interdependent. We fixn=50, s=0.5 and vary m in
h1,2, . . . ,20j. In Fig. 4 we depictex (x representing heart
rate) and ey (y representing breath) as a function ofm. The
value of m, providing the best model of time series, corre-
sponds to the knee of these curves: a greater value would
result in a more complicated model without a significant im-
provement of the prediction error. In Fig. 5 we depict the
quantitiesd1=c1/ex andd2=c2/ey, which measure the influ-
ence of one variable on the other. Since the curved2 is al-
ways aboved1, we may conclude that the causal influence of
heart rate on breath is stronger than the reverse[24]. Con-
cerning the directional indexD, we evaluate it at the peaks of
d curves—i.e., atm=5—and obtainD=0.76, a positive and

rather large value. It is worth stressing that the valuem=5, at
which peaks occur, is reasonable. Indeed in terms of fre-
quency it corresponds to 0.4 Hz; it is well known that the
high-frequency bands0.15–0.45 Hzd is characteristic of the
respiratory rhythm. These data have been already analyzed in
[8], measuring the rate of information flow(transfer en-
tropy), and a stronger flow of information from the heart rate
to the breath rate was found. In this example, the rate of
information flow entropy and Granger nonlinear causality
give consistent results: both these quantities, in the end, mea-
sure the departure from the generalized Markov property[8]

PsxuXd = PsxuX,Yd,

PsyuYd = PsyuX,Yd. s13d

As another physiological application we consider now rat
EEG signals from right and left cortical intracranial elec-
trodes, employed in the study of the pathophysiology of epi-

FIG. 2. (a) For the noise-free case of coupled maps(12), c1

=ex−exy (dashed line) andc2=ey−eyx (solid line) are plotted versus
coupling e. (b) The directionality indexD (see the text) is plotted
versuse in the noise-free case.(c) The directionality indexD is
plotted versuse, s=0.01.(d) D is plotted versuse, s=0.07.

FIG. 3. Time series of the heart RR(upper) and breath signal
(lower) of a patient suffering sleep apnea. Data sampled at 2 Hz.

FIG. 4. ex (diamonds, lower curve) andey (open circles, upper
curve) are plotted vsm, for the sleep apnea example.

FIG. 5. d1 (diamonds, lower curve) andd2 (open circles, upper
curve) are plotted vsm, for the sleep apnea example.
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lepsy and already analyzed in[7]. In Fig. 6 the normal EEG
signals(example A in[7]) from the rat is depicted. In Fig. 7
we depict the EEG signal from the same rat after unilateral
lesion in the rostral pole of the reticular thalamic nucleus
(example B in[7]): in this case spike discharges can be seen,
due to local synchronization of neurons activity in the neigh-
borhood of the electrode at which the signal was recorded.
We remark that, as epilepsy is related to abnormal synchro-
nization in the brain, spikes are usually considered as a land-
mark of epileptic activity. In order to analyze these record-
ings by Granger causality, we fixs=0.6,n=30 and varym in
h1,2, . . . ,20j. In Fig. 8 we depictex (x representing right
EEG) and ey (y representing left EEG) versusm, while in
Fig. 9 we depict the quantitiesd1 and d2, versusm. The
pattern in Fig. 9 shows a slight asymmetry; i.e., the influence
of the right channel on the left one seems to be slightly
stronger than the reverse. The directionality index, evaluated

in correspondence ofm=5, is D=0.14. Similar results are
obtained varyingn from 20 to 50. On the other hand, in the
case of example B, the asymmetry is much more pro-
nounced. In Fig. 10 we depictex and ey, versusm, in this
case forn=30. In Fig. 11,d1 andd2 versusm are depicted: in
this figure the pattern is clearly suggesting thaty is driving x.
In other words, after the lesion the influence of the left signal
on the right one is stronger and the peaks are now located at
m=4. The directionality index, evaluated in correspondence
of m=4, is nowD=−0.33. Also in this case the results are
found to be stable with respect to variations ofn. Since ex-
ample B is designed to mimic epileptic seizures, the pattern
we find suggests that the focus is on the left side. Comparing
with the analysis reported in[7], our analysis is in agreement
with those fromH andN measures of nonlinear interdepen-
dence(see[7]), which detected the same directions of asym-
metry in examples A and B. Stronger interdependence in
example B with respect to example A, like our method sug-

FIG. 6. Normal Rat EEG signals from right and left cortical
intracranial electrodes. For a better visualization, left signals are
plotted with an offset. Sampling rate is 200 Hz.

FIG. 7. Rat EEG signals from right and left cortical intracranial
electrodes, after lesion. For a better visualization, left signals are
plotted with an offset. Sampling rate is 200 Hz.

FIG. 8. ex (diamonds) andey (open circles) are plotted vsm, for
the EEG example A, withn=30. Curves are almost indistinguish-
able. Them value leading to the best model corresponds to the knee
of the curves.

FIG. 9. d1 (diamonds) andd2 (open circles) are plotted vsm, for
the EEG example A, withn=30.

RADIAL BASIS FUNCTION APPROACH TO NONLINEAR… PHYSICAL REVIEW E 70, 056221(2004)

056221-5



gests, was also detected in[7]. We conclude this subsection
stressing that our results show that the value of the direction-
ality index D may in some cases be very sensitive to statis-
tical fluctuations, especially when the interdependence is
weak. Also other quantities, likec1-2 or d1-2, must then be
taken into account to assess the Granger causality between
two time series.

IV. CONCLUSIONS

The components of complex systems in nature rarely dis-
play a linear interdependence of their parts: identification of
their causal relationships provides important insights into the
underlying mechanisms. Among the variety of methods
which have been proposed to handle this important task, a
major approach was proposed by Granger[1]. It is based on
improvement of the predictability of one time series due to
knowledge of the second time series: it is appealing for its

general applicability, but is restricted to linear models. While
extending the Granger approach to the nonlinear case, on the
one hand, one would like to have the most accurate modeling
of the bivariate time series; on the other hand, the goal is to
quantify how much knowledge of the other time series
counts to reach this accuracy. Our analysis is rooted in the
fact that any nonlinear modeling of data, suitable to study
causality, should satisfy the property P1, described in Sec. II.
It is clear that this property sets a limit on the accuracy of the
model; we have proposed a class of nonlinear models which
satisfy P1 and constructed an RBF-like approach to nonlin-
ear Granger causality. Its performances, in a simulated case
and real physiological applications, have been presented. We
conclude remarking that use of this definition of nonlinear
causality may lead to the discovery of genuine causal struc-
tures via data analysis, and validate the results that the analy-
sis has to be accompanied by a substantive theory.
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APPENDIX: REGULARIZATION THEORY

We show how the choice of functions(8) arise in the
frame of regularization theory. Letz be a function ofX and
Y. We assume thatz is the sum of a term depending solely on
X and one depending onY: zsX ,Yd= fsXd+gsYd. We also
assume knowledge of the values off and g at points

hX̃r ,Ỹrjr=1,. . .,n:

fsX̃rd = fr, r = 1, . . . ,n,

gsỸrd = gr, r = 1, . . . ,n. sA1d

Let us denote K̂svW d the Fourier transform of KsrWd
=exps−r2/2s2d. The following functional is a measure of the
smoothness ofzsX ,Yd:

Sfzg =E dvW
u f̂svW du2 + uĝsvW du2

K̂svW d
. sA2d

Indeed it penalizes functions with relevant contributions
from high-frequency modes. Variational calculus shows that
the function that minimizeS under the constraints(A1) is
given by

z= o
r=1

n

mrKsX − X̃rd + o
r=1

n

lrKsY − Ỹrd, sA3d

FIG. 10. ex (diamonds) and ey (open circles) are plotted vsm,
for the EEG example B, withn=30.

FIG. 11. d1 (diamonds) and d2 (open circles) are plotted vsm,
for the EEG example B, withn=30. Note that the values ofd
variables are larger, in this case, compared to values in Fig. 9.
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wherehmj andhlj are tunable Lagrange multipliers to solve
Eqs.(A1). Hence the model(4)–(8) corresponds to the class
of the smoothest functions, the sum of a term depending on
X and a term depending onY, with assigned values on a set
of n points.

The standard RBF modeling of the bivariate time series
[11], to be compared with model(4), is the following:

x = o
r=1

n8

w1
rKsZ − Z̃rd,

y = o
r=1

n8

w2
rKsZ − Z̃rd, sA4d

whereZ =sX Y d is the vector obtained appendingX andY,

hZ̃rj are obtained by clustering theZ data, andw1−2 are
determined by the least-squares method. In general, model
(A4) does not satisfy property P1; hence, it is not suited to
evaluate causality.
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