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We consider an extension of Granger causality to nonlinear bivariate time series. In this frame, if the
prediction error of the first time series is reduced by including measurements from the second time series, then
the second time series is said to have a causal influence on the first one. Not all the nonlinear prediction
schemes are suitable to evaluate causality; indeed, not all of them allow one to quantify how much knowledge
of the other time series counts to improve prediction error. We present an approach with bivariate time series
modeled by a generalization of radial basis functions and show its application to a pair of unidirectionally
coupled chaotic maps and to physiological examples.
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I. INTRODUCTION II. GRANGER CAUSALITY

o . . A. Linear modeling of bivariate time series
Identifying causal relations among simultaneously ac-

quired signals is an important problem in computational time We briefly recall the vector autoregressi®AR) model
series analysis and has applications in econ¢iyg], EEG  which is used to define linear Granger causality. Let
analysis[3], human cardiorespiratory systedi, interaction  {X}iz1, . n @and{yi}-1, . n be two time series oN simulta-
between heart rate and systolic arterial presg@ie and neously measured quantities. In the following we will as-
many others. Several papers dealt with this problem, relatingume that time series are stationary. kerl to M (where

it to identification of interdependence in nonlinear dynamicalM =N-m, m being the order of the modelwe denotex
systemg6,7] or to estimates of information raté8,9]. Some  =Xm,  Y*=Viern  X5=Keeme1, Xerme2s -+ X, and Y
approaches modeled data by oscillators and concentrated ey m-1,Yiem-2: - - - ,Yi) and we treat these quantities &
the phases of the signal$0]. One major approach to ana- realizations of the stochastic variablesy, X, Y). The fol-
lyze the causality between two time series is to examine ifowing model is then considerdd2]:

the prediction of one series could be improved by incorpo-

rating information of the other, as proposed by Grari@gm X=W - X+Wqo-Y,

the context of linear regression models of stochastic pro-
cesses. In particular, if the prediction error of the first time
series is reduced by including measurements from the second

im ries in the linear regression m I, then th n . . . .
time series In the linear regressio odel, then the seco } being fourm-dimensional real vectors to be estimated

time series is said to have a causal influence on the first tim 2om data by standard least-squares techniques. Let us call
series. By exchanging the roles of the two time series, one y d ques.

: . ; €,, and e, the prediction errors of this model, defined as the
can address the question of the causal influence in the oppg*Y.. Y !
N . ) NS . " “estimated variances af—-W1-X-W,-Y and y-W,;-X
site direction. It is worth stressing that, within this definition . :
) ; . ; S -W,,-Y, respectively. We also consider autoregressie)
of causality, flow of time plays a major role in making infer- ‘. : . )
. : : S . _predictions of the two time series—i.e., the model
ence, from time series data, depending on direction. SincB
Granger causality was formulated for linear models, its ap-
plication to nonlinear systems may not be appropriate. In this
paper we consider the problem of extending Granger causal-
ity definition to nonlinear problems. y=V,-Y, (2
In the next section we review the original approach by
Granger while describing our point of view about its nonlin- V; andV, to be estimated by least squares fit. The estimate
ear extension; we also propose a method which fulfills theof the variance ok-V,-X is callede, (the prediction error
requirements a prediction scheme should satisfy to analyzehenx is predicted solely on the basis of knowledge of its
causality. Our method exploits radial basis functions, an alpast valueg similarly, €, is the variance of/-V,-Y. If the
gorithm initially proposed to perform exact interpolation of a prediction ofx improves by incorporating the past values of
set of data points in a multidimensional spasee, e.g., {yil—i.e., & is smaller thane,—theny has a causal influ-
[11]). In Sec. Il we show application of the proposed ence orx. Analogously, ife,, is smaller thare,, thenx has a
method to simulated and real examples. Some conclusiorzausal influence oy. Calling ¢,=€,~ €, andc,=€,~ €y, a
are drawn in Sec. IV. directionality index can be introduced:

Yy=Wy - X+Wp-Y, (1)

X=V1-X,
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C,—Cp 3 We also consider the model
GG X=v; - ®(X),
The indexD varies from 1 in the case of unidirectional in-
fluence(x—y) to -1 in the opposite cagg— x), with inter- Y=V, - W(Y), (6)

mediate values corresponding to bidirectional influence. Ac-

cording to this definition of causality, the following property and the corresponding prediction err@sand e,.

holds for M sufficiently large:if Y is uncorrelated withX Now we prove that modg#) satisfies P1. Let us suppose
and x thene,= . This means that in this case VAR and AR thatY is statistically independent of andx. _Then, for each
modelings of thelx;} time series coincide. AnalogousifyX ~ #=1,....n and for each\=1, ... n, ¢,(Y) is uncorrelated

is uncorrelated withY and y, then e,=¢,,. It is clear that ~ With x and with ¢,(X). It follows that

these properties are fundamental and make the linear predic-

tion approach suitable to evaluate causality. On the other €xy = VailX = Wyg - B(X) ~wyp - W(Y)]

hand, for nonlinear systems higher-order correlgtipns may be =vafx—w,; - ®(X)]+vafw,, - ¥(Y)]. (7)
relevant. Therefore, we propose that any prediction scheme

providing a nonlinear extension of Granger causality shouldrhe vectors{w} must be fixed to minimize the prediction
satisfy the following property(P1) if Y is statistically inde- error ¢,,: from the equation above it follows that, for large
pendent ofX and x then =¢,,, if X is statistically inde- M, the minimum corresponds t,,=0; hence, model$4)
pendent ofY and y, thene =€, In a recent papefl3], use  and(6) of the {x;} time series coincide. The same argument
of a locally linear prediction schenjé&4] has been proposed may be used exchangingandy. This proves that P1 holds.
to evaluate nonlinear causality. In this scheme, the joint dy-
namics of the two time series is reconstructed by delay vec-
tors embedded in an Euclidean space; in the delay embed-
ding space a locally linear model is fitted to data. The In this subsection we propose a strategy to choose the
approach described |[j|_3] satisfies property P1 0n|y if the functions® and‘l’, in mOde|(4), in the frame of riidlal basis
number of points in the neighborhood of each referencéunctions(RBF) methods. Fixech<M, ncenters{xp}gzl, in
point, where linear fit is done, is sufficiently high to establishthe space o vectors, are determined by a clustering pro-
good statistics; however, linearization is valid only for smallcedure applied to data[xk}l'l":l, Analogously n centers
neighborhoods. It follows that this approach to nonlinear,

i ; | . . i 4 {Vp}zzl, in the space off vectors, are determined by a clus-
causality requires very long time series to sat'|sfy P1.Inor ®fering procedure applied to dafxl" .. We then make the
to construct methods working effectively with moderately

: T : : .2 following choice:
long time series, in the next subsection we will characterize g

the problem of extending Granger causality as the one of
finding classes of nonlinear models satisfying property P1.

C. Radial basis functions

¢,(X) =exp- |X - X209, p=1,...n,

B. Nonlinear models P (Y) =exp-|Y - Yo226?), p=1,...n, (8)

What is the most general class of nonlinear models which bei fixed ¢ h der of itude is th
satisfy P1? The complete answer to this question is mattef P€NY @ fixed parameter, whose order of magnitude 1S the

for further study. Here we only give a partial answer—i.e.,2verage spacing between the centers. The cefiXetsare

the following family of models: prototypes of theX variables; hencee functions measure
the similarity to these typical patterns. Analogoushfunc-
X=Wqy - P(X) + Wy W(Y), tions measure the similarity to typical patternsYof Many
clustering algorithms may be applied to find prototypes; for
Y =Wy - D(X) + Wy, - W(Y), (4)  example, in our experiments we use fuzzyneans[15].

) ) Some remarks are in order. First, we observe that the
where {w} are four n-dimensional real vectors,® ., qeis described above may trivially be adapted to handle
=(¢1, .- ,¢n) aren given nonlinear real functions ofi vari-  he case of reconstruction embedding of the two time series
ables, and¥'=(ys, ... ,¢p) aren other real functions o, 5 delay coordinate space, as describefl8}. Second, we
Val’iables. GiVenI) and \II, mOde|(4) iS a Iinear fUnCtion in stress that in Eq$4) X andy are mode'ed as the sum Of two
the space of featuresandy; it depends on A variables, the  contributions, one depending solely dhand the other de-
vectors{w}, which must be fixed to minimize the prediction pendent ony. Obviously better prediction models farand

errors y exist, but they would not be useful to evaluate causality
M unless they would satisfy P1. This requirement poses a limit
W iE [X<—wyp - ®(XK) =Wy, - WY to the_ IeveI_ of det_ail at v_vhich the two time s_eries may be
Mo described, if one is looking at causality relationships. The
justification of the model we propose here, based on regular-
1M ization theory[16], is sketched in the Appendix. In the Ap-
€= =YK= Waog - D(XX) = Wy - W(YH 2. (5) pendix we also 'recall the standard RBF modeling of the bi-
Mic1 variate time series.
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D. Empirical risk and generalization error

In the previous subsections the prediction error has beer
identified as the empirical risk, although there is a difference
between these two quantities as statistical learning theory (41
(SLT) [17] shows. The deep connection between empirical
risk and generalization error deserves a comment here. Firs
of all we want to point out that the ultimate goal of a pre- o
dictor and in general of any supervised machird(X) [18]
is to generalize-that is, to correctly predict the output val-
uesx corresponding to never seen before input patte¢ns
(for definiteness we consider the case of predickiran the
basis of the knowledge of). A measure of the generaliza- 0l
tion error of such a machinkis therisk R f] defined as the
expected value of the loss functiffx, f(X)):

0 0.1 0.2 0.3
R[f]:J dx dX V (x,f(X))P(x,X), 9 e

) . ) ) ) FIG. 1. The second Lyapunov exponent of the coupled maps
whereP(x,X) is the probability density function underlying (1) is plotted versus coupling.
the data. A typical example of loss function \§x, f(X))
=(x—f(X))? and in this case the function minimiziigjf] is
called theregression functionln generalP is unknown and . . . . o
so we cannot minimize the risk. The only data we have are L€t us consider the following pair of noisy logistic maps:
M observations(examples S={(x,X)}}, of the random X =@ X, (1) +57
variablesx and X drawn according taP(x,X). Statistical e " b
learning theory[17] as well as regularization theorjl6]
provides upper bounds of the generalization error of a learn-

A. Chaotic maps

Yor1=(1—-€) ay, (1-yp) +eax (1-X,) +Séu;

ing machinef. Inequalities of the following type may be 12
proven. {n} and {& are unit variance Gaussianly distributed noise
RIf]< ¢+C, (10) terms; the positive parameterdetermines their relevance.
Usings=<0.07, the time series is not observed to diverge. We
where fix a=3.8, ande e [0, 1] represents the coupling—y. In the
M noise-free case(s=0), a transition to synchronization
€= iz [x< = £(X9)]2 (11) (xn=yn) occurs ate=0.37. Weevaluate the Lyapunov ex-
M=y ponents by the method described[i20]: the first expo-

. - , ) . nentis 0.43, and the second exponent dependsand is
is the empirical risk which measures the error on the train- depicted in Fig. 1 fore<0.37 (it becomes negative for

ing data.C is a measure of theomplexityof machinef and ¢~ .37). For several values &f, we have considered runs
it is related to the so-called Vapnik-Chervonenki&C) di-  of 10P jterations, after 19 transients, and evaluated the
mension. Predictors with low complexity guarantee low 9€Nprediction errors by Eqsi4) and (6), with m=1, n=100,
eralization error because they avoid overfitting. When theyq +=0.05. InFig. 2(a) we depict, in the noise-free case,
complexity of the functional space where our predictorihe cyrves representing and c, versus couplinge. In
“lives” is small then the empirical risk is a good approxima- Figs. 2b)—2(d) we depict the directionality inde® versus
tion of the generalization error. The models we deal with ine, in the noise-free case and fsF0.01 ands=0.07, re-
this work verify such constraint. In fact, linear predictors spectively. In the noise-free case we filE1; i.e., our

have a finite VC dimension, equal to the size of the spacenethod revealed unidirectional influence. As the noise in-
where the input patterns live, and predictors expressed ageases, also the minimum value @fwhich renders uni-
linear combinations of radial basis functions are smooth. Iyirectional coupling detectable, increases.

conclusion empirical risk is a good measure of the generali-
zation error for the predictors we are considering here and so

it can be used to construct measures of causality between ) _ )
time serieq19]. As a real example, we consider time series of heart rate

and breath rate of a sleeping human suffering from sleep
IIl. EXPERIMENTS apnea(10 min from data set B of the Santa Fe Institute time
series contest held in 1991, available in the Physionet data
In order to demonstrate the usefulness of the proposebank[21]). There is growing evidence that suggests a causal
approach, in this section we study two examples: a pair ofink between sleep apnea and cardiovascular dis¢2®e
unidirectionally coupled chaotic maps and two physiologicalalthough the exact mechanisms that underlie this relationship
problems. remain unresolve3]. Figure 3 clearly shows that bursts of

B. Physiological data

056221-3



ANCONA, MARINAZZO, AND STRAMAGLIA PHYSICAL REVIEW E 70, 056221(2004

-3 0.03
prak 15
1
(]
0.5 0.02}
-2 w
0 0.1 0.2 0.3 0 0.1 0.2 0.3
(@) e (b) e
1.5 1.5 0.01F
1}, ~—~ 1
[m] [m]
0.5 0.5 o . . )
0 5 10 15 20
m
0 0.1 0.2 0.3 0 0.1 0.2 0.3
© ) o ' d) ' o ' FIG. 4. ¢ (diamonds, lower curyeand ¢, (open circles, upper

curve) are plotted van, for the sleep apnea example.
FIG. 2. (a) For the noise-free case of coupled mapg), c,

=&~ €y (dashed lingandc, =€~ €, (solid line) are plotted versus  rather large value. It is worth stressing that the vatue5, at
couplinge. (b) The directionality indexD (see the tejtis plotied  \yhich peaks occur, is reasonable. Indeed in terms of fre-
versuse in the noise-free cas_ec) The directionality indexD is guency it corresponds to 0.4 Hz; it is well known that the
plotted versus, s=0.01.(d) D is plotted versug, s=0.07. high-frequency band0.15—-0.45 H is characteristic of the

. . . respiratory rhythm. These data have been already analyzed in
Fhe patient breath and_cychcal fluctuations of heart rate ar(f8], measuring the rate of information flogtransfer en-
interdependent. We fixn=50, ¢=0.5 and varym in 45 and a stronger flow of information from the heart rate
{1,2,...,20. In Fig. 4 we depicte, (x representing heart , o preath rate was found. In this example, the rate of
rate) and e, (y representing breajtas a function ofn. The  ytormation flow entropy and Granger nonlinear causality
value ofm, providing the best model of time series, corre- %iJve consistent results: both these quantities, in the end, mea-

sponds to the knee of these curves: a greater value would;re the departure from the generalized Markov propidity
result in a more complicated model without a significant im-

provement of the prediction error. In Fig. 5 we depict the P(x|X) = P(x/X,Y),
quantitiesé,=c,/ €, and 6,=c,/ €, which measure the influ-
ence of one variable on the other. Since the cusvés al- P(y[Y) = P(Y[X,Y). (13)

ways aboved;, we may conclude that the causal influence of

heart rate on breath is stronger than the revg2de Con-  As another physiological application we consider now rat
cerning the directional inde®, we evaluate it at the peaks of EEG signals from right and left cortical intracranial elec-
6 curves—i.e., atn=5—and obtainrD=0.76, a positive and trodes, employed in the study of the pathophysiology of epi-
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FIG. 3. Time series of the heart RRppe) and breath signal FIG. 5. §; (diamonds, lower curyeand &, (open circles, upper

(lower) of a patient suffering sleep apnea. Data sampled at 2 Hz. curve) are plotted vam, for the sleep apnea example.
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FIG. 6. Normal Rat EEG signals from right and left cortical ~ F!G- 8. & (diamondg ande, (open circlegare plotted vsn, for

intracranial electrodes. For a better visualization, left signals ardéh® EEG example A, witm=30. Curves are almost indistinguish-
plotted with an offset. Sampling rate is 200 Hz. able. Themvalue leading to the best model corresponds to the knee

of the curves.

lepsy and already analyzed [ifi]. In Fig. 6 the normal EEG
signals(example A in[7]) from the rat is depicted. In Fig. 7
we depict the EEG signal from the same rat after unilatera
lesion in the rostral pole of the reticular thalamic nucleus
(example B in[7]): in this case spike discharges can be seen
e Lo el Sl Onizaton of neurens S I e s fure th paten s clealy Sggestng i g
We remark that, as epilepsy is related to abnormal synchrop other_words, a_fter the lesion the influence of the left signal
P - . ) n the right one is stronger and the peaks are now located at
nization in the brain, spikes are usually considered as a land- =4. The directionality index, evaluated in correspondence

_markbofGeplleptlc actlvﬁ/. In ofr_dfrotg aga?t’lé/ze ;[jhese re_cord-of m=4, is nowD=-0.33. Also in this case the results are
INgS Dy Loranger causality, we Ix=9.6,n=s0and vanmin ¢, 54 15 pe stable with respect to variationsnofSince ex-

{1,2,...,20. In Fig. 8 we depicte, (x representing right ; : S o .
) 2 ample B is designed to mimic epileptic seizures, the pattern
EEG) and ¢, (y representing left EEGversusm, while in o ing suggests that the focus is on the left side. Comparing

Fig. 9 we depict the quantities; and d,, versusm. The with the analysis reported i7], our analysis is in agreement

pattern in Fig. 9 shows a slight asymmetry; i.e., the influenc%th those fromH andN measures of nonlinear interdepen-

of the right channel on the left one seems 1o be slightly ence(see[7]), which detected the same directions of asym-
stronger than the reverse. The directionality index, evaluate

etry in examples A and B. Stronger interdependence in
example B with respect to example A, like our method sug-

in correspondence ah=5, is D=0.14. Similar results are
btained varyingh from 20 to 50. On the other hand, in the
ase of example B, the asymmetry is much more pro-

nounced. In Fig. 10 we depiet and €, versusm, in this

tase fom=30. In Fig. 11,6; and 5, versusm are depicted: in

3 z
W 0.06f
2} :
sl
!
-5
_6 L

-7

(mV)

—

o
iy
N
S
(3]

time (s)
FIG. 7. Rat EEG signals from right and left cortical intracranial

electrodes, after lesion. For a better visualization, left signals are FIG. 9. §; (diamond$ and &, (open circlesare plotted vsn, for
plotted with an offset. Sampling rate is 200 Hz. the EEG example A, witm=30.
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general applicability, but is restricted to linear models. While
extending the Granger approach to the nonlinear case, on the
one hand, one would like to have the most accurate modeling
of the bivariate time series; on the other hand, the goal is to
quantify how much knowledge of the other time series
counts to reach this accuracy. Our analysis is rooted in the
fact that any nonlinear modeling of data, suitable to study
causality, should satisfy the property P1, described in Sec. Il.
It is clear that this property sets a limit on the accuracy of the
model; we have proposed a class of nonlinear models which
satisfy P1 and constructed an RBF-like approach to nonlin-
ear Granger causality. Its performances, in a simulated case
and real physiological applications, have been presented. We
conclude remarking that use of this definition of nonlinear
0 5 10 15 20 causali_ty may lead to the discqvery of genuine causal struc-

m tures via data analysis, and validate the results that the analy-
sis has to be accompanied by a substantive theory.

0.015}

0.005

FIG. 10. ¢, (diamond$ and €, (open circleg are plotted vam,
for the EEG example B, witimn=30.
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two time series.
We show how the choice of function®) arise in the
frame of regularization theory. Letbe a function ofX and
IV. CONCLUSIONS Y. We assume thatis the sum of a term depending solely on

The components of complex systems in nature rarely disX @nd one depending o¥f: z(X,Y)=f(X)+g(Y). We also
play a linear interdependence of their parts: identification ofSSUme knowledge of the values éfand g at points
their causal relationships provides important insights into théXP Yp}p—l,...
underlying mechanisms. Among the variety of methods
which have been proposed to handle this important task, a -
major approach was proposed by Granigér It is based on f(XP) =1, p=1,...n,
improvement of the predictability of one time series due to
knowledge of the second time series: it is appealing for its

gY?) =g, p=1,...n. (A1)
o2l Let us denote K(w) the Fourier transform ofK(F)
' =exp(-r?/20?). The following functional is a measure of the
smoothness of(X,Y):
w
elf(w)lz Ig(w)l2
4= [ aa (A2)
K(w)

0.051 Indeed it penalizes functions with relevant contributions
from high-frequency modes. Variational calculus shows that
the function that minimizeS under the constraintéAl) is

0 5 10 15 20  given by
m
FIG. 11. §; (diamond$ and &, (open circleg are plotted vam, n _ n ~
for the EEG example B, witm=30. Note that the values of z=>, KX = XP) + > A K(Y = YP), (A3)
variables are larger, in this case, compared to values in Fig. 9. p=1 p=1
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where{u} and{\} are tunable Lagrange multipliers to solve n’

Egs.(Al). Hence the modgl)—(8) corresponds to the class y=> WEK(Z - ZP), (A4)
of the smoothest functions, the sum of a term depending on p=1

X and a term depending on, with assigned values on a set

of n points.

The standard RBF modeling of the bivariate time seriesvhereZ=(X Y) is the vector obtained appendidgandY,
[11], to be compared with mode#), is the following: {Z*} are obtained by clustering th data, andw;_, are

n’ determined by the least-squares method. In general, model
X = E wiK (Z —ZP), (A4) does not satisfy property P1; hence, it is not suited to
p=1 evaluate causality.
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